1\documentclass{article}
2
3\usepackage{fancyhdr}
4\usepackage{extramarks}
5\usepackage{amsmath}
6\usepackage{amsthm}
7\usepackage{amsfonts}
8\usepackage{tikz}
9\usepackage[plain]{algorithm}
10\usepackage{algpseudocode}
11\usepackage{rotating}
12
13\usetikzlibrary{automata,positioning}
14
15%
16% Basic Document Settings
17%
18
19\topmargin=-0.45in
20\evensidemargin=0in
21\oddsidemargin=0in
22\textwidth=6.5in
23\textheight=9.0in
24\headsep=0.25in
25
26\linespread{1.1}
27
28\pagestyle{fancy}
29\lhead{\hmwkAuthorName}
30\chead{\hmwkClass\ (\hmwkClassInstructor): \hmwkTitle}
31\rhead{\firstxmark}
32\lfoot{\lastxmark}
33\cfoot{\thepage}
34
35\renewcommand\headrulewidth{0.4pt}
36\renewcommand\footrulewidth{0.4pt}
37
38\setlength\parindent{0pt}
39
40%
41% Create Problem Sections
42%
43
44\newcommand{\enterProblemHeader}[1]{
45 \nobreak\extramarks{}{Problème \arabic{#1} continued on next page\ldots}\nobreak{}
46 \nobreak\extramarks{Problème \arabic{#1} (continued)}{Problème \arabic{#1} continued on next page\ldots}\nobreak{}
47}
48
49\newcommand{\exitProblemHeader}[1]{
50 \nobreak\extramarks{Problème \arabic{#1} (continued)}{Problème \arabic{#1} continued on next page\ldots}\nobreak{}
51 \stepcounter{#1}
52 \nobreak\extramarks{Problème \arabic{#1}}{}\nobreak{}
53}
54
55\setcounter{secnumdepth}{0}
56\newcounter{partCounter}
57\newcounter{homeworkProblemCounter}
58\setcounter{homeworkProblemCounter}{1}
59\nobreak\extramarks{Problème \arabic{homeworkProblemCounter}}{}\nobreak{}
60
61%
62% Homework Problem Environment
63%
64% This environment takes an optional argument. When given, it will adjust the
65% problem counter. This is useful for when the problems given for your
66% assignment aren't sequential. See the last 3 problems of this template for an
67% example.
68%
69\newenvironment{homeworkProblem}[1][-1]{
70 \ifnum#1>0
71 \setcounter{homeworkProblemCounter}{#1}
72 \fi
73 \section{Problème \arabic{homeworkProblemCounter}}
74 \setcounter{partCounter}{1}
75 \enterProblemHeader{homeworkProblemCounter}
76}{
77 \exitProblemHeader{homeworkProblemCounter}
78}
79
80%
81% Homework Details
82% - Title
83% - Due date
84% - Class
85% - Section/Time
86% - Instructor
87% - Author
88%
89
90\newcommand{\hmwkTitle}{Khôlle}
91\newcommand{\hmwkDueDate}{2024/09/23}
92\newcommand{\hmwkClass}{Maths}
93\newcommand{\hmwkClassInstructor}{M. Chiecchio}
94\newcommand{\hmwkAuthorName}{\textbf{Louis Dalibard}}
95
96%
97% Title Page
98%
99
100\title{
101 \vspace{2in}
102 \textmd{\textbf{\hmwkClass:\ \hmwkTitle}}\\
103 \normalsize\vspace{0.1in}\small{\hmwkDueDate}\\
104 \vspace{0.1in}\large{\textit{\hmwkClassInstructor}}
105 \vspace{3in}
106}
107
108\author{\hmwkAuthorName}
109\date{}
110
111\renewcommand{\part}[1]{\textbf{\large Part \Alph{partCounter}}\stepcounter{partCounter}\\}
112
113%
114% Various Helper Commands
115%
116
117% Useful for algorithms
118\newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}}
119
120% For derivatives
121\newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)}
122
123% For partial derivatives
124\newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)}
125
126% Integral dx
127\newcommand{\dx}{\mathrm{d}x}
128
129% Alias for the Solution section header
130\newcommand{\solution}{\textbf{\large Solution}}
131
132% Probability commands: Expectation, Variance, Covariance, Bias
133\newcommand{\E}{\mathrm{E}}
134\newcommand{\Var}{\mathrm{Var}}
135\newcommand{\Cov}{\mathrm{Cov}}
136\newcommand{\Bias}{\mathrm{Bias}}
137
138\begin{document}
139
140\maketitle
141
142\pagebreak
143
144\begin{homeworkProblem}
145 Le but de cet exercice est de démontrer le théorème de Cantor-Bernstein.
146
147 Considérons $E$ et $F$ deux ensembles infinis.
148
149 Le théorème de Cantor-Bernstein est le suivant:
150 \[
151 (\exists \Phi : E \longrightarrow F,
152 \exists \Psi : F \longrightarrow E,\quad \Phi \text{ injective et } \Psi \text{ injective} )
153 \implies E \simeq F
154 \]
155
156 \begin{enumerate}
157 \item Montrer que toute fonction croissante pour $\subseteq$ admet un point fixe. \footnote{\begin{turn}{180}
158 \textbf{Aide:} Considérer l'ensemble $H = \{x\in P(E) \mid x \subseteq f(x)\}$\end{turn}}
159 \item Supposons:
160 \[
161 \exists \Phi : E \to F,
162 \exists \Psi : F \to E,\quad \Phi \text{ injective et } \Psi \text{ injective}
163 \]
164 On considere la fonction \begin{align*}
165\gamma\colon \mathcal{P}(E) & \longrightarrow \mathcal{P}(E)\\
166A&\longmapsto E\setminus\Psi(F\setminus\Phi(A)),
167\end{align*}
168\item Montrer que $\gamma$ est croissante pour $\subseteq$
169\item En déduire une bijection de $E$ dans $F$. Conclure.
170
171 \end{enumerate}
172\end{homeworkProblem}
173
174\end{document}